Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257371

RESUMO

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Assuntos
Gangliosídeo G(M1) , Doença de Gaucher , Humanos , Fibroblastos , beta-Galactosidase/genética , Corantes , Citometria de Fluxo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidas
2.
Cell Death Discov ; 9(1): 290, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558696

RESUMO

Systemic administration of Nogo-A-neutralizing antibody ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, the blood-brain barrier (BBB) is a major obstacle limiting the passage of systemically applied antibody to the CNS. To bypass the BBB, in the present study we tested the intranasal route of administration by targeting the olfactory mucosa with the Nogo-A-blocking antibody 11C7 mAb in myelin oligodendrocyte glycoprotein-induced EAE. Antibodies were specifically administered onto the olfactory mucosa using a microcatheter. Antibody distribution was examined in the CNS by ELISA and light-sheet microscopy. The effects of 11C7 mAb on Nogo-A signaling were assessed by Western blotting. EAE-induced deficits were monitored daily. Demyelination was observed on spinal cord histological sections. Gene expression changes were followed by trancriptomic analyses. A sensitive capture ELISA revealed a rapid and widespread distribution of 11C7 mAb in the CNS, including the olfactory bulb, the cerebellum and the lumbar spinal cord, but not in the CSF. Light-sheet microscopy allowed to observe antibody accumulation in the parenchyma, thus demonstrating nose-to-brain transfer of IgG. At the functional level, the widespread penetration of 11C7 mAb in the CNS, including the thoracolumbar spinal cord, resulted in the improvement of motor symptoms and in the preservation of myelin in the spinal cord of EAE mice. This was accompanied by Nogo-A signaling downregulation, as reflected by the decreased level of phosphorylated cofilin observed by Western blotting in the cerebellum. In the brain of EAE score-matched animals, 11C7 modified the expression of genes that can influence neurotransmission and cognitive functions, independently of the demyelination phenotype in the spinal cord. In conclusion, our data show the feasibility of olfactory mucosa-directed administration for the delivery of therapeutic antibodies targeting CNS antigens in EAE mice.

3.
J Med Chem ; 66(14): 9519-9536, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37433124

RESUMO

Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-ß oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.


Assuntos
Doenças Neurodegenerativas , Agregados Proteicos , Humanos , Membrana Celular/metabolismo , Proteínas Amiloidogênicas/química , Doenças Neurodegenerativas/metabolismo , Lipídeos , Bicamadas Lipídicas/metabolismo , Peptídeos beta-Amiloides/metabolismo
4.
iScience ; 26(5): 106611, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37128606

RESUMO

High cholesterol levels are a risk factor for the development of Alzheimer's disease. Experiments investigating the influence of cholesterol on the proteolytic processing of the amyloid precursor protein (APP) by the ß-secretase Bace1 and on their proximity in cells have led to conflicting results. By using a fluorescence bioassay coupled with flow cytometry we found a direct correlation between the increase in membrane cholesterol amount and the degree of APP shedding in living human neuroblastoma cells. Analogue results were obtained for cells overexpressing an APP mutant that cannot be processed by α-secretase, highlighting the major influence of cholesterol enrichment on the cleavage of APP carried out by Bace1. By contrast, the cholesterol content was not correlated with changes in membrane dynamics of APP and Bace1 analyzed with single molecule tracking, indicating that the effect of cholesterol enrichment on APP processing by Bace1 is uncoupled from changes in their lateral diffusion.

5.
Stem Cell Res ; 73: 103235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38323760

RESUMO

Congenital Disorders of Glycosylation (CDG) are rare inherited metabolic diseases caused by genetic defects in the glycosylation of proteins and lipids. In this study, we describe the generation and characterization of one human induced pluripotent stem cell (hiPSC) line from a 15-year-old male patient with CDG. The patient carried three variants, one (c.122G > A; p.Arg41Gln) inherited from his father and two (c.445 T > G; p.Leu149Arg and the novel c.980C > G; p.Thr327Arg) inherited from his mother in the ALG8 gene (OMIM #608103). The generated hiPSC line shows a normal karyotype, expresses pluripotency markers, and is able to differentiate into the three germ layers.


Assuntos
Defeitos Congênitos da Glicosilação , Células-Tronco Pluripotentes Induzidas , Masculino , Humanos , Adolescente , Defeitos Congênitos da Glicosilação/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicosilação , Glucosiltransferases/genética , Mutação
6.
ACS Omega ; 7(48): 43729-43737, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506141

RESUMO

The emergence of ionotronic materials has been recently exploited for interfacing electronics and biological tissues, improving sensing with the surrounding environment. In this paper, we investigated the synergistic effect of regenerated silk fibroin (RS) with a plant-derived polyphenol (i.e., chestnut tannin) on ionic conductivity and how water molecules play critical roles in regulating ion mobility in these materials. In particular, we observed that adding tannin to RS increases the ionic conductivity, and this phenomenon is accentuated by increasing the hydration. We also demonstrated how silk-based hybrids could be used as building materials for scaffolds where human fibroblast and neural progenitor cells can highly proliferate. Finally, after proving their biocompatibility, RS hybrids demonstrate excellent three-dimensional (3D) printability via extrusion-based 3D printing to fabricate a soft sensor that can detect charged objects by sensing the electric fields that originate from them. These findings pave the way for a viable option for cell culture and novel sensors, with the potential base for tissue engineering and health monitoring.

7.
FASEB J ; 36(12): e22655, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421008

RESUMO

Trodusquemine is an aminosterol with a variety of biological and pharmacological functions, such as acting as an antimicrobial, stimulating body weight loss and interfering with the toxicity of proteins involved in the development of Alzheimer's and Parkinson's diseases. The mechanisms of interaction of aminosterols with cells are, however, still largely uncharacterized. Here, by using fluorescently labeled trodusquemine (TRO-A594 and TRO-ATTO565), we show that trodusquemine binds initially to the plasma membrane of living cells, that the binding affinity is dependent on cholesterol, and that trodusquemine is then internalized and mainly targeted to lysosomes after internalization. We also found that TRO-A594 is able to strongly and selectively bind to myelinated fibers in fixed mouse brain slices, and that it is a marker compatible with tissue clearing and light-sheet fluorescence microscopy or expansion microscopy. In conclusion, this work contributes to further characterize the biology of aminosterols and provides a new tool for nerve labeling suitable for the most advanced microscopy techniques.


Assuntos
Colestanos , Animais , Camundongos , Colestanos/farmacologia , Espermina/farmacologia , Microscopia de Fluorescência/métodos , Colesterol
8.
Biomedicines ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009508

RESUMO

BACKGROUND: Early diagnosis is essential in the field of lysosomal storage disorders for the proper management of patients and for starting therapies before irreversible damage occurs, particularly in neurodegenerative conditions. Currently, specific biomarkers for the diagnosis of lysosomal storage disorders are lacking in routine laboratory practice, except for enzymatic tests, which are available only in specialized metabolic centers. Recently, we established a method for measuring and verifying changes in GM1 ganglioside levels in peripheral blood lymphocytes in patients with GM1 gangliosidosis. However, fresh blood is not always available, and using frozen/thawed lymphocytes can lead to inaccurate results. METHODS: We used frozen/thawed fibroblasts obtained from stored biopsies to explore the feasibility of fluorescent imaging and flow-cytometric methods to track changes in storage materials in fibroblasts from patients with three lysosomal neurodegenerative conditions: GM1 gangliosidosis, Sialidosis, and Niemann-Pick type C. We used specific markers for each pathology. RESULTS AND CONCLUSIONS: We demonstrated that with our methods, it is possible to clearly distinguish the levels of accumulated metabolites in fibroblasts from affected and unaffected patients for all the three pathologies considered. Our methods proved to be rapid, sensitive, unbiased, and potentially applicable to other LSDs.

9.
ACS Appl Mater Interfaces ; 14(17): 19253-19264, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438960

RESUMO

Flexible and biocompatible adhesives with sensing capabilities can be integrated onto human body and organ surfaces, characterized by complex geometries, thus having the potential to sense their physiological stimuli offering monitoring and diagnosis of a wide spectrum of diseases. The challenges in this innovative field are the following: (i) the coupling method between the smart adhesive and the soft human substrates, (ii) the bioresorbable behavior of the material, and (iii) the electrical exchange with the substrate. Here, we introduce a multifunctional composite by mixing silk fibroin, featuring piezoelectric properties, with a soluble plant-derived polyphenol (i.e., chestnut tannin) modified with graphene nanoplatelets. This material behaves as a glue on different substrates and gives rise to high elongation at break, conformability, and adhesive performances to gastrointestinal tissues in a rat model and favors the printability via extrusion-based 3D printing. Exploiting these properties, we designed a bioresorbable 3D printed flexible and self-adhesive piezoelectric device that senses the motility once applied onto a phantom intestine and the hand gesture by signal translation. Experimental results also include the biocompatibility study using gastrointestinal cells. These findings could have applicability in animal model studies, and, thanks to the bioresorbable behavior of the materials, such an adhesive device could be used for monitoring the motility of the gastrointestinal tract and for the diagnosis of motility disorders.


Assuntos
Adesivos , Seda , Implantes Absorvíveis , Adesivos/química , Animais , Impressão Tridimensional , Ratos , Cimentos de Resina , Seda/química
10.
J Phys Chem C Nanomater Interfaces ; 126(9): 4483-4494, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35299820

RESUMO

In recent years, many efforts have been devoted to investigating the interaction of nanoparticles (NPs) with lipid biomimetic interfaces, both from a fundamental perspective aimed at understanding relevant phenomena occurring at the nanobio interface and from an application standpoint for the design of novel lipid-nanoparticle hybrid materials. In this area, recent reports have revealed that citrate-capped gold nanoparticles (AuNPs) spontaneously associate with synthetic phospholipid liposomes and, in some cases, self-assemble on the lipid bilayer. However, the mechanistic and kinetic aspects of this phenomenon are not yet completely understood. In this study, we address the kinetics of interaction of citrate-capped AuNP with lipid vesicles of different rigidities (gel-phase rigid membranes on one side and liquid-crystalline-phase soft membranes on the other). The formation of AuNP-lipid vesicle hybrids was monitored over different time and length scales, combining experiments and simulation. The very first AuNP-membrane contact was addressed through molecular dynamics simulations, while the structure, morphology, and physicochemical features of the final colloidal objects were studied through UV-visible spectroscopy, small-angle X-ray scattering, dynamic light scattering, and cryogenic electron microscopy. Our results highlight that the physical state of the membrane triggers a series of events at the colloidal length scale, which regulate the final morphology of the AuNP-lipid vesicle adducts. For lipid vesicles with soft membranes, the hybrids appear as single vesicles decorated by AuNPs, while more rigid membranes lead to flocculation with AuNPs acting as bridges between vesicles. Overall, these results contribute to a mechanistic understanding of the adhesion or self-assembly of AuNPs onto biomimetic membranes, which is relevant for phenomena occurring at the nano-bio interfaces and provide design principles to control the morphology of lipid vesicle-inorganic NP hybrid systems.

11.
ACS Chem Neurosci ; 12(17): 3189-3202, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382791

RESUMO

Many neurodegenerative diseases are associated with the self-assembly of peptides and proteins into fibrillar aggregates. Soluble misfolded oligomers formed during the aggregation process, or released by mature fibrils, play a relevant role in neurodegenerative processes through their interactions with neuronal membranes. However, the determinants of the cytotoxicity of these oligomers are still unclear. Here we used liposomes and toxic and nontoxic oligomers formed by the same protein to measure quantitatively the affinity of the two oligomeric species for lipid membranes. To this aim, we quantified the perturbation to the lipid membranes caused by the two oligomers by using the fluorescence quenching of two probes embedded in the polar and apolar regions of the lipid membranes and a well-defined protein-oligomer binding assay using fluorescently labeled oligomers to determine the Stern-Volmer and dissociation constants, respectively. With both approaches, we found that the toxic oligomers have a membrane affinity 20-25 times higher than that of nontoxic oligomers. Circular dichroism, intrinsic fluorescence, and FRET indicated that neither oligomer type changes its structure upon membrane interaction. Using liposomes enriched with trodusquemine, a potential small molecule drug known to penetrate lipid membranes and make them refractory to toxic oligomers, we found that the membrane affinity of the oligomers was remarkably lower. At protective concentrations of the small molecule, the binding of the oligomers to the lipid membranes was fully prevented. Furthermore, the affinity of the toxic oligomers for the lipid membranes was found to increase and slightly decrease with GM1 ganglioside and cholesterol content, respectively, indicating that physicochemical properties of lipid membranes modulate their affinity for misfolded oligomeric species.


Assuntos
Colestanos , Bicamadas Lipídicas , Peptídeos beta-Amiloides , Gangliosídeo G(M1) , Espermina/análogos & derivados
12.
ACS Appl Mater Interfaces ; 13(18): 21007-21017, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33934601

RESUMO

In this study, regenerated silk (RS) obtained from Bombyx Mori cocoons is compounded with carboxyl-functionalized carbon nanotubes (f-CNTs) in an aqueous environment for the fabrication of functional bio-adhesives. Molecular interactions between RS and carboxyl groups of CNTs result in structural increase of the ß-sheet formation, obtaining a resistant adhesive suitable for a wet biological substrate. Moreover, the functionalization of CNTs promotes their dispersion in RS, thus enabling the production of films with controlled electrical conductivity. The practical utility of such a property is demonstrated through the fabrication of a piezoelectric device implanted in a rat to monitor the breathing in vivo and to be used as a self-powered system. Finally, RS/f-CNTs were used as a printable biomaterial ink to three dimensionally print bilayer hollow tubular structures composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and RS. Initial tests carried out by seeding and growing human skin fibroblasts demonstrated that the 3D printed bilayer hollow cylindrical structures offer a suitable surface for the seeded cells to attach and proliferate. In general, the herein proposed RS/f-CNT composite serves as a versatile material for solvent-free dispersion processing and 3D printing, thus paving a new approach to prepare multifunctional materials with potential applications of great interest in sealing biological substrates and implantable devices for regenerative medicine.


Assuntos
Adesivos/química , Tinta , Nanotubos de Carbono/química , Impressão Tridimensional , Seda/química , Animais , Materiais Biocompatíveis/química , Proliferação de Células , Humanos , Ratos , Tecidos Suporte
13.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800443

RESUMO

Gold nanoparticles (AuNPs) show physicochemical and optical functionalities that are of great interest for spectroscopy-based detection techniques, and especially for surface enhanced Raman spectroscopy (SERS), which is capable of providing detailed information on the molecular content of analysed samples. Moreover, the introduction of different moieties combines the interesting plasmonic properties of the AuNPs with the specific and selective recognition capabilities of the antibodies (Ab) towards antigens. The conjugation of biomolecules to gold nanoparticles (AuNPs) has received considerable attention for analysis of liquid samples and in particular biological fluids (biofluids) in clinical diagnostic and therapeutic field. To date, gold nanostars (AuNSts) are gaining more and more attention as optimal enhancers for SERS signals due to the presence of sharp branches protruding from the core, providing a huge number of "hot spots". To this end, we focused our attention on the design, optimization, and deep characterization of a bottom up-process for (i) AuNPs increasing stabilization in high ionic strength buffer, (ii) covalent conjugation with antibodies, while (iii) retaining the biofunctionality to specific tag analyte within the biofluids. In this work, a SERS-based substrate was developed for the recognition of a short fragment (HA) of the hemagglutinin protein, which is the major viral antigen inducing a neutralizing antibody response. The activity and specific targeting with high selectivity of the Ab-AuNPs was successfully tested in transfected neuroblastoma cells cultures. Then, SERS capabilities were assessed measuring Raman spectra of HA solution, thus opening interesting perspective for the development of novel versatile highly sensitive biofluids sensors.

14.
Amyloid ; 28(1): 56-65, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33026249

RESUMO

Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature.


Assuntos
Esclerose Amiotrófica Lateral/genética , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Amiloide/genética , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Esclerose Amiotrófica Lateral/patologia , Encéfalo/patologia , Encéfalo/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli/genética , Demência Frontotemporal/patologia , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Domínios Proteicos/genética , Estrutura Secundária de Proteína
15.
Nanoscale ; 12(44): 22596-22614, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33150350

RESUMO

Trodusquemine is an aminosterol known to prevent the binding of misfolded protein oligomers to cell membranes and to reduce their toxicity in a wide range of neurodegenerative diseases. Its precise mechanism of action, however, remains unclear. To investigate this mechanism, we performed confocal microscopy, fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) measurements, which revealed a strong binding of trodusquemine to large unilamellar vesicles (LUVs) and neuroblastoma cell membranes. Then, by combining quartz crystal microbalance (QCM), fluorescence quenching and anisotropy, and molecular dynamics (MD) simulations, we found that trodusquemine localises within, and penetrates, the polar region of lipid bilayer. This binding behaviour causes a decrease of the negative charge of the bilayer, as observed through ζ potential measurements, an increment in the mechanical resistance of the bilayer, as revealed by measurements of the breakthrough force applied with AFM and ζ potential measurements at high temperature, and a rearrangement of the spatial distances between ganglioside and cholesterol molecules in the LUVs, as determined by FRET measurements. These physicochemical changes are all known to impair the interaction of misfolded oligomers with cell membranes, protecting them from their toxicity. Taken together, our results illustrate how the incorporation in cell membranes of sterol molecules modified by the addition of polyamine tails leads to the modulation of physicochemical properties of the cell membranes themselves, making them more resistant to protein aggregates associated with neurodegeneration. More generally, they suggest that therapeutic strategies can be developed to reinforce cell membranes against protein misfolded assemblies.


Assuntos
Bicamadas Lipídicas , Lipossomas Unilamelares , Membrana Celular , Colestanos , Espermina/análogos & derivados
16.
Sci Rep ; 9(1): 17684, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776384

RESUMO

GM1 ganglioside, a monosialic glycosphingolipid and a crucial component of plasma membranes, accumulates in lysosomal storage disorders, primarily in GM1 gangliosidosis. The development of biomarkers for simplifying diagnosis, monitoring disease progression and evaluating drug therapies is an important objective in research into neurodegenerative lysosomal disorders. With this in mind, we established fluorescent imaging and flow-cytometric methods to track changes in GM1 ganglioside levels in patients with GM1 gangliosidosis and in control cells. We also evaluated GM1 ganglioside content in patients' cells treated with the commercially available Miglustat, a substrate inhibitor potentially suitable for the treatment of late-onset GM1 gangliosidosis. The flow-cytometric method proved to be sensitive, unbiased, and rapid in determining variations in GM1 ganglioside content in human lymphocytes derived from small amounts of fresh blood. We detected a strong correlation between GM1 ganglioside content and the clinical severity of GM1 gangliosidosis. We confirm the ability of Miglustat to act as a substrate reduction agent in the patients' treated cells. As well as being suitable for diagnosing and managing patients with GM1 gangliosidosis this method could be useful in the diagnosis and management of other lysosomal diseases, such as galactosialidosis, Type C Niemann-Pick, and any other disease with pathologic variations of GM1 ganglioside.


Assuntos
Gangliosídeo G(M1)/análise , Gangliosídeo G(M1)/metabolismo , Gangliosidose GM1/classificação , Gangliosidose GM1/diagnóstico , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Biomarcadores/análise , Biomarcadores/metabolismo , Células Cultivadas , Progressão da Doença , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo/métodos , Gangliosidose GM1/sangue , Gangliosidose GM1/patologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Imagem Óptica/métodos , Fenótipo , Índice de Gravidade de Doença
17.
Circ Res ; 124(8): e44-e54, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30732554

RESUMO

RATIONALE: Despite major advances in cardiovascular medicine, heart disease remains a leading cause of death worldwide. However, the field of tissue engineering has been growing exponentially in the last decade and restoring heart functionality is now an affordable target; yet, new materials are still needed for effectively provide rapid and long-lasting interventions. Liquid crystalline elastomers (LCEs) are biocompatible polymers able to reversibly change shape in response to a given stimulus and generate movement. Once stimulated, LCEs can produce tension or movement like a muscle. However, so far their application in biology was limited by slow response times and a modest possibility to modulate tension levels during activation. OBJECTIVE: To develop suitable LCE-based materials to assist cardiac contraction. METHODS AND RESULTS: Thanks to a quick, simple, and versatile synthetic approach, a palette of biocompatible acrylate-based light-responsive LCEs with different molecular composition was prepared and mechanically characterized. Out of this, the more compliant one was selected. This material was able to contract for some weeks when activated with very low light intensity within a physiological environment. Its contraction was modulated in terms of light intensity, stimulation frequency, and ton/toff ratio to fit different contraction amplitude/time courses, including those of the human heart. Finally, LCE strips were mounted in parallel with cardiac trabeculae, and we demonstrated their ability to improve muscular systolic function, with no impact on diastolic properties. CONCLUSIONS: Our results indicated LCEs are promising in assisting cardiac mechanical function and developing a new generation of contraction assist devices.


Assuntos
Materiais Biocompatíveis , Elastômeros , Coração Auxiliar , Luz , Cristais Líquidos , Contração Miocárdica , Engenharia Tecidual/métodos , Acrilatos , Órgãos Bioartificiais , Materiais Biocompatíveis/síntese química , Fenômenos Biofísicos , Reagentes de Ligações Cruzadas/química , Elastômeros/síntese química , Transferência de Energia , Cristais Líquidos/química , Sistemas Microeletromecânicos/métodos , Movimentos dos Órgãos , Fatores de Tempo , Tecidos Suporte/química
18.
Curr Protoc Cell Biol ; 81(1): e58, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30085418

RESUMO

The standard approach to study the activity of proteases consists of lysing cells and measuring the changes in the fluorescence properties of a synthetic substrate after cleavage in vitro. Here, a general protocol that uses a bi-fluorescent chimeric construct of a known substrate protein that follows the proteolytic processing in living cells is described. This approach is useful, in particular, to search for pharmacological conditions altering the cleavage rate of a certain protease, or to investigate the biological factors influencing a certain proteolytic mechanism. Three different methods (microscopy, flow cytometry, and spectroscopy) to detect fluorescence changes due to alteration in the processing are described. This approach was originally developed for studying conditions affecting the proteolytic activity of the ß-secretase Bace1 on the amyloid precursor protein APP, but can in principle be applied to investigate any membrane protein undergoing ectodomain shedding by proteolytic cleavage. © 2018 by John Wiley & Sons, Inc.


Assuntos
Técnicas Citológicas/métodos , Proteínas de Membrana/metabolismo , Proteólise , Linhagem Celular Tumoral , Sobrevivência Celular , Citometria de Fluxo , Humanos , Espectrometria de Fluorescência
19.
Methods Mol Biol ; 1814: 425-448, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956248

RESUMO

Here, we describe protocols for three-dimensional tracking of single quantum dot-conjugated molecules with nanometer accuracy in living cells using conventional fluorescence microscopy. The technique exploits out-of-focus images of single emitters combined with an automated pattern-recognition open-source software that fits the images with proper model functions to extract the emitter coordinates. We describe protocols for targeting quantum dots to both membrane components and cytosolic proteins.


Assuntos
Imageamento Tridimensional , Microscopia de Fluorescência/métodos , Pontos Quânticos/química , Algoritmos , Calibragem , Linhagem Celular Tumoral , Sobrevivência Celular , Citosol/metabolismo , Análise de Dados , Gangliosídeo G(M1)/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Proteínas de Membrana/metabolismo , Coloração e Rotulagem
20.
PeerJ ; 5: e3086, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413720

RESUMO

Alzheimer's disease is a multifactorial disorder caused by the interaction of genetic, epigenetic and environmental factors. The formation of cytotoxic oligomers consisting of Aß peptide is widely accepted as being one of the main key events triggering the development of Alzheimer's disease. Aß peptide production results from the specific proteolytic processing of the amyloid precursor protein (APP). Deciphering the factors governing the activity of the secretases responsible for the cleavage of APP is still a critical issue. Kits available commercially measure the enzymatic activity of the secretases from cells lysates, in vitro. By contrast, we have developed a prototypal rapid bioassay that provides visible information on the proteolytic processing of APP directly in living cells. APP was fused to a monomeric variant of the green fluorescent protein and a monomeric variant of the red fluorescent protein at the C-terminal and N-terminal (mChAPPmGFP), respectively. Changes in the proteolytic processing rate in transfected human neuroblastoma and rat neuronal cells were imaged with confocal microscopy as changes in the red/green fluorescence intensity ratio. The significant decrease in the mean red/green ratio observed in cells over-expressing the ß-secretase BACE1, or the α-secretase ADAM10, fused to a monomeric blue fluorescent protein confirms that the proteolytic site is still accessible. Specific siRNA was used to evaluate the contribution of endogenous BACE1. Interestingly, we found that the degree of proteolytic processing of APP is not completely homogeneous within the same single cell, and that there is a high degree of variability between cells of the same type. We were also able to follow with a fluorescence spectrometer the changes in the red emission intensity of the extracellular medium when BACE1 was overexpressed. This represents a complementary approach to fluorescence microscopy for rapidly detecting changes in the proteolytic processing of APP in real time. In order to allow the discrimination between the α- and the ß-secretase activity, we have created a variant of mChAPPmGFP with a mutation that inhibits the α-secretase cleavage without perturbing the ß-secretase processing. Moreover, we obtained a quantitatively robust estimate of the changes in the red/green ratio for the above conditions by using a flow cytometer able to simultaneously excite and measure the red and green fluorescence. Our novel approach lay the foundation for a bioassay suitable to study the effect of drugs or particular conditions, to investigate in an unbiased way the the proteolytic processing of APP in single living cells in order, and to elucidate the causes of the variability and the factors driving the processing of APP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...